
𝛼 = 1741.5 ∗
2∗1.38∗105

0.001∗50
= 1.044 ∗ 1010, [m*kg-1] 

𝑅𝐹 = 75.651 ∗
1.38∗105

0.001
= 9.613 ∗ 1010, [M-1] 

 

Remark: It is surprising to notice that the filter resistance RF more than doubles when 

switching from 69 to 138 kPa. In fact, it should remain constant, provided it is the same 

material that has been used for both experiments. In a normal situation (as suggested by 

the linearized equation), the intercept of the regression should be divided by two when 

the pressure is doubled. A possible explanation for this strange behavior could be that the 

filter itself is of a compressible nature, which would make the flow of liquid more difficult at 

higher pressure. 

 

2. Is the cake of a compressible nature? 

It can be seen that the value of α does not change significantly from 69 to 138 kPa. The 

calculated value for the cake compressibility n is ca. 0.22, which effectively corresponds 

to a fairly incompressible cake. 

 

Exercise 2.4: Lysis kinetics in a bead mill 

Schütte & Kula (1990)(1) have lysed Bacillus cereus cells in a bead mill and 

measured the activity of the released L-Leucine dehydrogenase (LDH) in the 

liquid phase as a function of treatment duration. The results are given in the 

table below: 

t [min] 0.10 0.35 1.00 1.67 3.00 5.09 8.10 13.03 

LDH [U/mL] 1.15 4.15 9.08 14.7 21.62 28.97 33.73 36.32 

 

(1) Schütte H., Kula M.-R. (1990): Pilot- and process-scale techniques for cell 

disruption. Biotechnology and Applied Biochemistry 12, 599-620 

 

1. Assuming lysis kinetics is first order, determine the value of the kinetic 

constant. 

ln (R m/(Rm-R)) = k·t. 

The problem with that kind of linearization is that one needs to give an estimate for the 

maximal value of the measured variable, Rm, (here the enzyme activity concentration) to 

be able to do the regression. This is a bit strange since R m is one of the model 

parameters. In the present case, Rm = 37.1 [U/ml] gave the best linearity (R2=0.9999). 

t [min] 0.1 0.35 1 1.67 3 5.09 8.1 13.03 

LDH 

[U/mL] 
1.15 4.15 9.08 14.7 21.62 28.97 33.73 36.32 

ln (R 

m/(Rm

-R)) 

0.03148788

5 

0.1186

3 

0.280

7 

0.5045

6 

0.8740

7 

1.5180

6 

2.398

7 

3.8620

8 

 



Make a plot of ln(R m/(Rm-R)) = f(t): 

 

 

k=0.2964 min-1 

2. What is the main complication with linearizations of the form ln (R m/(Rm-

R)) = k·t ? 

The problem with that kind of linearization is that one needs to give an estimate for the 

maximal value of the measured variable, Rm, (here the enzyme activity concentration) to 

be able to do the regression. 

If a non-linear regression is performed, this problem can be avoided since both parameters 

can be optimized simultaneously. The result is Rm = 36.83 [U/ml] and k = 0.289 [min-1]. 

 

Exercise 2.5: Cell lysis in a high pressure homogenizer 

Cell lysis of a yeast suspension was achieved using a high pressure 

homogenizer at different pressures. The results are given in the graph below 

under the linear form corresponding to the Hetherington equation. 

y = 0.2964x

R² = 0.9999
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1. How many passages N would you need to reach 90% lysis at each pressure? 

(take N as a continuous variable) 

2. What minimal pressure would you need to achieve 75% lysis after three 

passages? 

Reminder: 1 kg/cm2 = 0.981 bar 

 

 

1. As already stated, this problem is based on Hetherington’s equation: 

log (
𝑅𝑚

𝑅𝑚 − 𝑅
) = 𝐾 ∗ 𝑁 ∗ 𝑃𝑛 

A lysis rate of 90% means that R is equal to 0.9 Rm, which in turn implies that R m/(Rm – R) 

is equal to 10 and that log[R m/(Rm – R)] is equal to 1.0. 

Hence one just needs to draw a horizontal line at log[R m/(Rm – R)] = 1 on the above graph 

and read the values of N corresponding to the different pressures. 



 

One then finds: 

P [kg/cm2] 500 400 340 270 200 100 

P [Pa] 490.5 392.4 333.54 264.87 196.2 98.1 

N [y=1] 4.8 7.4      

y [N=9.75]   0.65 0.4 0.17 0.017 

K*P^n 0.208333333 0.13513514 0.066667 0.041026 0.017435897 0.001744 

N, when y=1     15 24.375 57.35294118 573.5294 

 

For the first two pressures, we can get N directly from the figure, but for the last four 

pressures, it is hard to get it directly, so I select the final plot of each line to calculate the N. 

 

2. With 75% lysis, log[R m/(Rm – R)] is equal to 0.602. To answer the question graphically we 

can draw a vertical line at N=3 and a horizontal line at log[R m/(Rm – R)] = 0.602.  



 

We then see that the required pressure lies pretty close to 500 kg/cm2 or 491 bar. 

To obtain a more precise answer we need to know the values of K and n in the Hetherington 

equation. This can be obtained by plotting the log of the K *Pn values in the table above as a 

function of logP. log (K*P^n)=log(K)+n*log(P), This is done below: 

logP 2.6906390

12 

2.593729 2.52314

8 

2.42303

3 

2.2926990

03 

1.99166

9 

log (K*P^n) -

0.6812412

37 

-

0.869231

7 

-

1.17609 

-

1.38694 

-

1.7585556

9 

-

2.75856 

logK -8.665           

n 2.9872           

K 2.16272E-

09 

          

l 

The slope of the straight line is equal to the exponent n = 2.9872. The intercept, -8.665, is 

equal to log(K). As a consequence, K = 2.16272*10-09 [Pa-298721] (note that the units for K 

depend strongly on the value for n). 

We now have a full description of our system and we can solve for p when log[R m/(Rm – R)] 

= 0.602 and N = 3. 

log (
𝑅𝑚

𝑅𝑚 − 𝑅
) = 0.602 = 𝐾𝑁𝑃𝑛 = 2.16272 ∗ 10−9 ∗ 3 ∗ 𝑃2.9872 

Solving for P, one finds: P = 465 [Pa], which is very close to the graphically found solution. 


