2%1.38%105
0.001%50

a=1741.5x

= 1.044 * 10%°, [m*kg]

1.38%10°
0.001

Ry = 75.651 = =9.613 * 1010, [M"]

Remark: It is surprising to notice that the filter resistance RF more than doubles when
switching from 69 to 138 kPa. In fact, it should remain constant, provided it is the same
material that has been used for both experiments. In a normal situation (as suggested by
the linearized equation), the intercept of the regression should be divided by two when
the pressure is doubled. A possible explanation for this strange behavior could be that the
filter itself is of a compressible nature, which would make the flow of liquid more difficult at
higher pressure.

2. Is the cake of a compressible nature?
It can be seen that the value of a does not change significantly from 69 to 138 kPa. The
calculated value for the cake compressibility n is ca. 0.22, which effectively corresponds
to a fairly incompressible cake.

Exercise 2.4: Lysis kinetics in a bead mill

Schitte & Kula (1990)(1) have lysed Bacillus cereus cells in a bead mill and

measured the activity of the released L-Leucine dehydrogenase (LDH) in the
liquid phase as a function of treatment duration. The results are given in the

table below:

t [min] 0.100.35|1.00|1.67|3.00 |5.09 |8.10 |13.03
LDH[U/mL] | 1.15|4.15|9.08 | 14.7 | 21.62 | 28.97 | 33.73 | 36.32

(1) Schutte H., Kula M.-R. (1990): Pilot- and process-scale techniques for cell
disruption. Biotechnology and Applied Biochemistry 12, 599-620

1. Assuming lysis kinetics is first order, determine the value of the kinetic
constant.
In (R m/(Rm-R)) = k-t.
The problem with that kind of linearization is that one needs to give an estimate for the
maximal value of the measured variable, Rm, (here the enzyme activity concentration) to
be able to do the regression. This is a bit strange since R m is one of the model
parameters. In the present case, Rm = 37.1 [U/ml] gave the best linearity (R2=0.9999).

t [min] 0.1 0.35 1 1.67 3 5.09 8.1 13.03
LDH

1.15 4.15 9.08 14.7 21.62 28.97 | 33.73 36.32
[U/mL]
In (R
IR 0.03148788 | 0.1186 | 0.280 | 0.5045 | 0.8740 | 1.5180 | 2.398 | 3.8620
m/(Rm

5 3 7 6 7 6 7 8

-R))




Make a plot of In(R m/(Rm-R)) = (t):
4.5

4 y = 0.2964x
35 R? = 0.9999

3
2.5
2
1.5
1
0.5

0
0 5 10 15

k=0.2964 min-!

2. What is the main complication with linearizations of the form In (R m/(Rm-
R)) = k-t ?
The problem with that kind of linearization is that one needs to give an estimate for the
maximal value of the measured variable, Rm, (here the enzyme activity concentration) to
be able to do the regression.
If a non-linear regression is performed, this problem can be avoided since both parameters
can be optimized simultaneously. The result is Rm = 36.83 [U/ml] and k = 0.289 [min-1].

Exercise 2.5: Cell lysis in a high pressure homogenizer

Cell lysis of a yeast suspension was achieved using a high pressure
homogenizer at different pressures. The results are given in the graph below
under the linear form corresponding to the Hetherington equation.
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1. How many passages N would you need to reach 90% lysis at each pressure?
(take N as a continuous variable)

2. What minimal pressure would you need to achieve 75% lysis after three
passages?

Reminder: 1 kg/cm2 = 0.981 bar

1. As already stated, this problem is based on Hetherington’s equation:
log(R—m) =K x*N xP"
R, — R
A lysis rate of 90% means that R is equal to 0.9 Rm, which in turn implies that R m/(Rm — R)
is equal to 10 and that log[R m/(Rm — R)] is equal to 1.0.
Hence one just needs to draw a horizontal line at log[R m/(Rm — R)] = 1 on the above graph
and read the values of N corresponding to the different pressures.
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One then finds:

P [kg/cm?2] 500 400 340 270 200 100
P [Pa] 4905 3924 33354  264.87 196.2 98.1
N [y=1] 4.8 74

y [N=9.75] 0.65 0.4 0.17 0.017
KxPAn 0.208333333 0.13513514 0.066667 0.041026 0.017435897 0.001744
N, when y=1 15 24375 57.35294118 573.5294

For the first two pressures, we can get N directly from the figure, but for the last four
pressures, it is hard to get it directly, so | select the final plot of each line to calculate the N.

2. With 75% lysis, log[R m/(Rm — R)] is equal to 0.602. To answer the question graphically we
can draw a vertical line at N=3 and a horizontal line at log[R m/(Rm — R)] = 0.602.
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We then see that the required pressure lies pretty close to 500 kg/cm2 or 491 bar.

To obtain a more precise answer we need to know the values of K and n in the Hetherington
equation. This can be obtained by plotting the log of the K *P" values in the table above as a
function of logP. log (K*P”~n)=log(K)+n*log(P), This is done below:

logP 2.6906390 | 2.593729 | 2.52314 | 2.42303 | 2.2926990 | 1.99166
12 8 3 03 9

log (K*P"n) - - - - - -
0.6812412 | 0.869231 | 1.17609 | 1.38694 | 1.7585556 | 2.75856
37 7 9

logK -8.665

n 2.9872

K 2.16272E-
09

I

The slope of the straight line is equal to the exponent n = 2.9872. The intercept, -8.665, is
equal to log(K). As a consequence, K = 2.16272*10-%° [Pa-2%8721] (note that the units for K
depend strongly on the value for n).

We now have a full description of our system and we can solve for p when log[R m/(Rm — R)]
=0.602 and N = 3.

R
10g( = ) = 0.602 = KNP™ = 2.16272 % 1072 3  p2-9872
R, —R

Solving for P, one finds: P = 465 [Pa], which is very close to the graphically found solution.



